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TECHNICAL PAPER

REVIEW OF THE PROBABILISTIC FAILURE ANALYSIS METHODOLOGY AND

OTHER PROBABILISTIC APPROACHES FOR APPLICATION IN

AEROSPACE STRUCTURAL DESIGN

I. INTRODUCTION

The purpose of this report is to document the work the Marshall Space Flight Center

(MSFC) probabilistic analysis team has been involved in during 1991-1992. The report introduction

is divided into three sections: (A) Background Information; (B) MSFC Task, Objectives, and

Operating Plan; and (C) Project Scope.

A. Background Information

For a number of years, NASA has been designing spacecraft and structures using the safety

factor/deterministic approach to design. Although the method is well established and generally

accepted by the aerospace community, it does not provide a quantitative means for identifying the

failure risk associated with a given design or flight. In 1985, the Jet Propulsion Laboratory (JPL)

Engine Certification Project was initiated to develop an improved methodology for quantitatively

evaluating and establishing flight readiness (certification). The program was titled Probabilistic

Failure Analysis (PFA), and it is funded through codes Q and M. The Challenger accident (1986)

impacted the development of this technology in several ways. First, Professor Richard Feynman,

during the failure investigation, determined that the design engineers believed the risk of engine

failure was about 1 in 200; higher management understood the risk to be 1 in 100,000.1 Later analy-

ses supported the engineers estimate. Somewhere between design and certification for design, the

real information was being lost. NASA began to examine different approaches for identifying risk,

perhaps at the design level. Risk could then be elevated to certification in a quantitative procedure,
rather than qualitatively implied from safety factor.

The second influence of the Challenger accident was that a significant amount of money was

appropriated for the advancement of safety/risk technology. In addition to the JPL Engine

Certification Project, the Probabilistic Structural Analysis Methodology (PSAM) Project, directed by

NASA Lewis Research Center (LeRC), received large sums of funding. The primary analysis tool

that resulted from this project was NESSUS, a probabilistic finite element software code developed

by Southwest Research Institute. The PSAM program was structured as follows: (1) to understand

how probabilistic analysis fit into the engineering process at the component level; (2) to advance

probabilistic analysis into the system level; and (3) to develop the understanding of how it fits into

the certification process. In other words, the PSAM Project approached the safety/risk technology
problem from the bottom up, while the JPL Engine Certification Project approach was from the top

down. Although the philosophies vary, both methodologies handle problem uncertainty solely from a

probabilistic format, not a safety factor approach, or any combination with safety factor.



In 1988,an effort was initiated with MSFC to begin "technology transfer" of the JPL prob-
abilistic methods.The team was led by Henry Stinsonof the PropulsionLab. From 1988through
1990little progresswas made.The PFA technology,as defined, documented,and presented,was
extremely difficult to penetrateand understand.In Januaryof 1991, 6 yearsafter the JPL Engine
Projectwas initiated, no one (excepttheJPL team)wasapplying the PFA technology to real prob-
lems. As a result, the PFA programwas canceledby the ShuttleProgram Office (Bob Crippen).
Later, the PFA programwas reinstatedwith limited funding throughFY92, provided MSFC would
take on an active roll. In March of 1991,a new Marshall team was established.The results and
findings of this MSFC team'sefforts (May of 1991to December1992)aredocumentedherein.

B. MSFC Task, Objectives, and Operating Plan

The MSFC probabilistic analysis team consists of the following members: Dr. John

Townsend, Mario Reinfurth, Rene Ortega, Charlie Meyers, and Jeff Peck, Structures and Dynamics,

and Bob Weinstock, Vitro. A number of others participated during the investigation. Namely, Greg
Swanson from Stress, Brian Goode from Thermal Division, and Steve Gentze from Materials. The

JPL team participants are Dr. Nick Moore, Dr. Don Ebbeler, Ms. Laura Newlin, and Dr. Dharshan
Sutharshana.

A program operating plan was jointly written by the MSFC and JPL teams and approved by

Headquarters codes Q and M. The plan is documented in reference 2. The overall program objective

was to formally assess the merits and application of the JPL team's PFA methodology in the design

process. No formal assessment of the PFA methods for use in certification was made. The program

goals were: (1) to develop an indepth understanding of the PFA methodology, (2) to assess the
utility of the methodology and supporting software tools, and (3) to develop a plan for the technology
transfer of the methods from JPL to MSFC. From the outset, the MSFC team decided not to use the

PFA methods as a "black box" tool into which information is input and out pops an answer. Also,

the team chose problem application as the basic approach for achieving these goals. To climb the

learning curve as quickly as possible, a simple cantilever beam example problem was worked using

the PFA software and approach. This simple beam example provided an excellent tool for communi-
cation between JPL and MSFC, as well as to others interested in understanding the basic PFA

methods. The other problem worked of interest to the Marshall team was the high pressure oxygen

turbopump (HPOTP) first-stage turbine disk seal rib cracking problem. A third problem identified as

the carrier vehicle support structure--part of the Aeroassist Flight Experiment (AFE)--was

removed from the task, since AFE was canceled in early 1992. Documentation review was also a

major part of the MSFC task team approach for penetrating the PFA methodology.

C. Project Scope

The scope of this report is divided into several sections. Section II documents the details of

the cantilever beam example. In particular, this section identifies: (1) the steps involved in working

this type of problem using a probabilistic format and (2) findings in terms of the PFA approach com-

pared with a more classical probabilistic analysis. Section III presents specifics of the PFA methods
and, in particular, how these methods fit into a probabilistic framework. Also documented in section

III is an issues and concerns review and a class-of-problems list for which the PFA approach has

application. Section IV discusses the methods and software developed by the JPL team to model the

material uncertainty characteristic of S-N fatigue data. The classical approach for handling fatigue

data uncertainty is also examined. Section V provides the reader with insight into the application of

2



responsesurface methods; detailed examplesare presented.Also, the role of responsesurface
methodsin the PFA processis reviewed.A detaileddiscussionof the HPOTP problemexampleis
given in sectionVI. Other methods,and perhapsbetterapproachesat using probabilistic methodsin
engineering, are presentedin section VII. Of particular interest is a review of the finite element
probabilistic engineering analysis tool known as NESSUS.Section VIII gives a short discussion
with recommendationson the development of a NASA probabilistic-based design code. The
documentis concludedin sectionIX with a report summaryandrecommendationsfor applicationof
probabilisticmethodswithin NASA.

II. CANTILEVER BEAM EXAMPLE

A simple cantilever beam example problem was chosen as the educational and communica-

tion tool of the MSFC team. The beam problem helped the team to rapidly climb the learning curve of

probabilistic analysis concepts and, in particular, the PFA methods. Also, it provided the MSFC

team with a communication tool for demonstrating these concepts and findings to others.

A. The Steps

Figure 1 gives a sketch of the cantilever beam problem along with the steps used to work the

problem using a probabilistic format. The first step is to develop a "closed-form" equation that

defines the failure parameter as a function of the model parameters. In this case, beam tip displace-

ment is defined as the failure parameter with input parameters, termed drivers, of load (P), beam

length (L), material modulus of elasticity (E), and cross-sectional moment of inertia (Iz). To develop

a closed-form equation of this nature is not trivial, it requires engineering knowledge of problem

physics, and in many cases simplifying assumptions. For example, to define the equation shown in

figure 1 requires that one assume linear and homogeneous material behavior, small displacements,
and no shear deformation.

The second step in the process is to establish the model parameters or input probability dis-

tributions. This part of the procedure is probably the most difficult for engineers to complete. Three

methods for obtaining the distributions are: (1) test data, (2) design requirements, and (3) engineer-
ing judgment. The preferred model is the one based on test data. However, in many cases, test data

may not be available or economically obtainable. If the engineer is going to use a distribution based
on his judgment, then it is a good idea to have a design tool (software) available for establishing
parameter distribution sensitivities.

Once the math model is determined in closed-form, and the driver distributions are chosen,

the third step in the process can be completed. Namely, the engineer can use Monte Carlo simulation

to determine the probability distribution of the failure parameter/output. Several different computa-

tional methods are available for estimating the reliability of a design, and simulation is perhaps the

easiest understood. Also, simulation is the basis for all of the PFA methods. The procedure is as
follows. A random number generator is used to pick a single value from each of the input parameter

distributions. These numbers are then used in the closed-form equation to give a single deterministic

value for the output parameter. This same loop is repeated thousands of times until enough informa-

tion is available to either determine the probability of nonexceedence (estimated from counting) or to

fit a distribution to the output parameter data.

3
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Figure 1. Cantilever beam example.



The final step addresses the question of how to use the data. Two possible avenues are
available. The distribution data can be used (1) to estimate structural reliability, or (2) to understand

output/input parameter sensitivities. First of all, there are two ways to estimate reliability from data.

The simplest and most straightforward method is to count the number of times the output parameter

exceeds the failure criteria. For example, in this cantilever beam problem, the failure criteria was a

tip displacement of 1 inch. The procedure is to run the simulation X number of times (say, 5,000) and

count the number of times the answer exceeded 1 inch (say, 5). This direct method gives an estimate

of reliability of 1-(5/5,000) or 0.999. The counting method does not require curve fitting or

extrapolation; but, typically, it does require a large number of computer runs.

The second approach for determining the reliability estimate is through curve fitting to either

the entire output distribution, or to the tail region of the distribution. Of course, this procedure does

not require as many computer runs, but it does use the curve fit for extrapolating data. Many

engineers consider data extrapolation to the reliability estimate an absolute wrong. The problem is

complicated by the fact that math models and parameter distributions used to perform the analytical
estimate of reliability are in error. Furthermore, the engineer must be prepared to make confidence

statements with respect to the reliability estimate.

By definition, true reliability is demonstrated, not simply estimated from an engineering
analysis. Until failure rate data bases are available from experience, probabilistic methods can best

be utilized as a design tool to help identify the sensitivities of problem parameters.

B. The Findings

The input drivers in the problem are not shown graphically, but the distributions used, their
mean values, and the corresponding coefficients of variations (COV's) are referenced below:

INPUT DATA

DRIVERS PARAMETERS

BEAM LENGTH (L), inches UNIFORM (34.200, 37.800)

MOM OF INERTIA (IZ), inches UNIFORM (3.665, 5.470)

APPLIED LOAD (P), kips

APPLIED LOAD (P), kips
NORMAL: (1,000.0, 25.0)-Figures 2 and 3

LOGNORMAL: (1,000.0, 25.0)-Figures 4 and 5

YOUNG'S MODULUS (E), lb/in 2 NORMAL: (0.30E+08, 0.60E+06)

Results of the cantilever beam example problem are shown graphically in figures 2 through 5.

Notice in figure 2, the probability density function (PDF) for the output parameter, beam tip
displacement, is plotted by the top graph; and the cumulative distribution function (CDF) which is

the area under the PDF curve (i.e., the integral of the PDF function) is given by the bottom graph.
Three standard probability curves are used to fit the simulation data (5,000 values); the normal, the

Weibull, and the lognormal. The sample mean of tip displacement is 0.116 inch, with a standard

deviation of 0.017 inch and a COV of 14.8 percent. Beam tip displacement is plotted on the graph

abscissa, and the PDF value is the ordinate. The data points define a histogram grouping of 5,000
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simulation values. Twelve bins are used with a bin width of 0.01 in. Also note, the histogram data

have been normalized so that the area under the curve is one. Keep in mind that a different choice of

bin size and number will result in a slightly different representation of the data values. The PDF

curve fits to the simulation values are also approximations. Of course, the truest representation of
the simulation data is given by the data values (i.e., no curve fit).

Based on visual comparisons, the lognormal curve fit provides the best analytical data

approximation. This finding is easily verified using statistical curve fitting routines and "goodness-
of-fit" tests. The MSFC team used a program developed by Professor Paul Wirsching to determine

which curve provides the best data fit. 3 The program uses a W-statistic based on a form similar to

the Cramer-Von Mises statistic. If engineers are going to use probabilistic methods to analyze

structures, then it is imperative that the probabilistic design tools include methods for determining
which curve or curves best represent the input drivers and output data. The current PFA software

package does not included "goodness-of-fit" tools.

The cumulative distribution curve, known as the CDF or Ogive, is the characteristic curve of

probabilistic analyses. Figure 3 shows an expanded view of the right-hand tail of the CDF curve

given in figure 2. Probability predictions based on normal, Weibull, and lognormal curve fits are

shown, along with a histogram reduction of the data (identified by the CDF data points). Also shown

in the graph is a probability curve based on counting. For example, each point on the curve defines
the quantity 1 minus the ratio of the number of exceedences of that value to the total number of

simulations. The counting procedure, of course, is the preferred method of estimating reliability; but

typically, it requires a large number of computer runs.
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Since in a well-designedsystemthe probability of failure is low, the engineeris concerned
usually with the extremevalues of the input drivers (designvariables)and tail ends of the output
parameterdistributions. For the cantilever beam example given, the corresponding probability
numberto a tip displacementof 0.16 inch is highly dependenton which type distribution is usedto
represent the simulation data. A Weibull curve fit over estimates the reliability at a value of
0.9999999,andthe lognormalcurve fit underestimatesthenumberat a valueof 0.985.The counting
methodgives a value of 0.9986.The engineermust be concernedwith not only developinga good
model, but in understandinghow the designvariablesinfluencethe reliability estimate.Also, if the
engineerattemptsto curve fit the outputdistribution, thenhe must determineif the final reliability
estimate is conservative or unconservative,and to what degree. Until reliability engineering
experiencebasesaredevelopedfor a particularmaterialand design, it is highly recommendedthat
thecounting methodsalwaysbeusedto estimatereliability. Dataextrapolationis not recommended,
andinterpolationmethodsmustbeusedwithin their rangeof accuracy.In anycurve fitting procedure,
convergencelimits must be defined.The bottomgraph in figure 3 shows the effects on probability
estimatesof usinga Weibull curvefit of 5 simulationsversus5,000simulations.

The resultsof a secondcantileverbeamexampleproblemaregraphedin figures 4 and5. This
exampleshowssomeof the uniquefeaturesof the PFA methods.The PFA approachusesthe same
basic stepsin the designprocessidentified earlier. The primary differencein the PFA approachis
how the engineer is directed to handle the data.Figure 4 gives the PDF and CDF curves for the
beam parameterof inverse tip displacement.To use the PFA method requires that the engineer
transform the right-hand tail exceedenceprobleminto a left-handtail distribution. The transforma-
tion processis necessarybecausethe Weibull distribution curve, a left-hand distribution curve,
forms the basisof the PFA methods.It does,however,complicate the engineeringprocedureand
understandingof the problem.The engineeris concernedwith tip displacementand its characteristic
distribution, not with the inverse.Also, a distribution and its inverseand their meansand standard
deviationsmaynot map thesame.What is normalin onecasecanbe lognormalfor its inverse.

The purposeof the transformationis to curve fit the simulation data to a Weibull-baseddis-
tribution known asthe Burr distribution.Typically, a Weibull distribution is a two parameterdistri-
bution. The two parametersare known as the characteristiclife parameter,lambda,and the shape
parameter,eta. The PFA method fits a two parameterbetadistribution to the parameterlambda.
This process maps the data into a three parameterdistribution known as the Burr. Both the
lognormal and Burr curve fit distributions of the PDF andCDF are plotted versus the normalized
histogramdata in figure 4. Notice, the Burr curve fit is only accuratein the extreme left-hand tail
regionof the curve. Figure 5 is anexpandedview of figure 4. By tuning threeparameters,the Burr
curvefit is matchedclosely to thesimulationdatato fit the left handtail of theoutputdistribution.

The Burr curve fit is a very complextool to useto modeldata.As it turns out, thepurposeof
the Burr curve fit is twofold: (1) it providesa goodcurvefit of thesimulation datafor extrapolation,
and (2) it providesa math model that handlesBayesianupdatingin closed-form. The MSFC team
believesboth of thesereasonshave little applicationin practicaldesign.First, reliability estimates
basedon extrapolationarenot recommended.If curve fitting dataandextrapolationarenecessary,a
simpler method is to use a three- or four-parameterleast-squarescurve fit to obtain the desired
estimate.Second,Bayesianupdating can only significantly changea reliability estimate (a prior
estimate)if failure occurs.A "damaged"structureusuallyrequiresredesign.If a structurehas failed
and has been redesigned (typically, a costly process), then the logical and best approach to
estimatingrisk of the new design is to developnew mathmodelsfor usein updatingthe reliability
analysis.Hence,Bayesianupdatingin thiscontexthaslimited practicalapplication.
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IH. THE PFA METHODS

The JPL PFA methods and approaches to solving structural design problems are discussed in
this section. Topics include (1) the probabilistic framework into which the PFA methods are

structured, (2) a summary of the issues and concerns of the MSFC team with application of the PFA

methods, and (3) the class of design problems the PFA methods are best suited for.

A. Probabilistie Framework

The block diagram shown in figure 6 identifies the characteristic steps of the PFA engineering
process. The first step in working a probabilistic format, or for that matter any standard format

problem, is to develop an engineering model of the structure or problem. The finite-element method

is one of the primary analysis tools used by engineers for developing structural models. A typical
finite-element model can have as many as 5,000 degrees of freedom (DOF). Some models are so

detailed and complex, that 50,000 DOF is normal. Of course, this type of problem is more difficult to

work than the closed-form problems such as the one defined by the cantilever beam in section II.

There are two approaches for incorporating the finite-element model into a probabilistic

framework: (1) one can simply use the entire model and perform Monte Carlo simulation, or (2) one

can use the finite-element model to develop a response surface equation to use with the probabilistic

analysis. The response surface approach is the only practical method for large models. The basic

concept of response surface is to develop a single equation that can be used in place of the

thousands of finite element equations. The engineer must make a lot of assumptions if he is to use

this "optimizing" approach. The procedure is very similar to the design of experiments method for

developing an empirical equation. First, the engineer must decide on the output parameter of interest

and its input drivers. He must then write an equation in functional form; i.e., using a first-, second-,
or third-order equation with coupling terms. The unknowns in the equation are the coefficients of the

input driver variables. After the empirical form of the response surface equation is assumed, the

finite-element problem is run a sufficient number of times to properly determine the coefficients.

Further details of this method along with an example problem are given in section V.

The response surface method provides a practical means for incorporating complex finite-

element models into a probabilistic format or framework. The engineer must keep in mind, however,
that a response surface is only an approximation to a finite-element model solution, which is also an

approximation. It is important, therefore, to understand all the assumptions made in developing
these two approximations, and the effects of these assumptions on the output parameter of interest.

Once the response surface is defined (i.e., the closed-form equation is developed), the problem then

reverts back to the same basic procedure used previously to work the cantilever beam example.

A number of computational schemes are available for working probabilistic engineering type
problems. The PFA methods developed by the JPL team are restricted to Monte Carlo simulation.

Once the closed-form relationship is defined between the input and output variables, the procedure
to use the Monte Carlo simulation is easily applied. Also, there are a number of software simulation

tools on the market that can be purchased at a minor cost. Before simulation can be run, the input
parameters, or life drivers, must be characterized in terms of a distribution. As mentioned in the

beam problem, this step is probably one of the most difficult for the engineer to complete. In many
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cases, no test data are available, and the engineer must make estimates on the type of distribution

to utilize. It is important that the engineer understand the effects of his distribution assumptions in

terms of sensitivity of input drivers on the output parameter. A good software tool is invaluable for

these types of sensitivity studies. The PFA software is a FORTRAN coded package that is problem

specific. The source code must be changed by the user to work a variety of problems. In this sense,

the PFA software is not a good tool for the practicing engineer, but a research tool for use in

development.

The last major step of the engineering process is to generate simulated response data using

Monte Carlo simulation of the response surface equation with the input life driver characterizations.

The output parameter can be any parameter that correlates with life; i.e., stress or strain, or an event

consequent parameter, such as burst pressure. The engineering process defined by these steps is

not new technology. The key to making the probabilistic engineering process practical is being able

to link it with established software tools such as finite elements. The response surface methods may

provide the necessary link. The PFA methods make use of response surface technology, but the

documentation is very limited and unclear. The assumptions that define a response surface must be

well understood before application can be made.

The main thrust of the PFA methodology is directed not to the engineering process, but

toward the application of the output parameter data once they are generated. Three types of failures

have been addressed: (1) event consequent failures (exceedence problems), (2) low- and high-cycle
fatigue failures, and (3) fracture mechanics failures. Primarily, the MSFC team has reviewed the

PFA low- and high-cycle fatigue studies. Fatigue data, in general, define a large scatter or

uncertainty. Coefficients of variation (COV's) are typical at 50 percent. The method PFA uses to

characterize fatigue data is addressed in the JPL report under the title of Materials Characteriza-
tion. 4 It is a very difficult section to penetrate and understand. To help the MSFC team understand

the process of characterizing the uncertainty in fatigue data, standard texts on the subject were
referenced.5 16

Fatigue data are usually characterized by stress or strain life curves known as S-N curves.

The standard practice is to place an uncertainty (distribution) either on (1) the life value (N) for a

given stress or strain, (2) the stress or strain value (S) for a given life, or the slope of the S-N curve

(m). The distribution curve used to model the data should be defined by the data. In all cases, the

PFA method uses a Weibull curve to represent the data. Once again, the reason for this fixed

distribution choice is so that a closed-form equation can be developed for use with Bayesian

updating. Also, the PFA material characterization method and software are structured with many

features with limited utility for most problems. The standard probabilistic S-N concepts are not

difficult to understand and apply. Section IV of this report describes the basic approach.

The JPL team has done a considerable amount of work in developing the concept of
bootstrapping for engineering application. The MSFC team has not reviewed their work in depth, but

the bootstrap method may have application for characterizing fatigue data. The PFA fracture

mechanics application is another area the MSFC team has not examined. A cursory comment is that

the PFA fracture mechanics methods are structured to link with Bayesian statistical methods. Once

again, the process is difficult to understand and apply.

In conclusion, the MSFC team believes that the best way to introduce probabilistic methods

into design engineering practice is through a well-established and defined process. The JPL team

has failed to identify specific details of the engineering design process and how the PFA probabilistic
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analysis methods apply. In particular, the technique by which an engineer integrates complex
models,suchasfinite elements,into a probabilisticframeworkis very unclear.The PFA methodsare
structuredto work primarily with the tail end of theengineeringprocess;i.e., predicting a reliability
numberthat canbe laterupdatedusingBayesiantechniques.

B. Issues and Concerns

In reviewing the PFA methods, the MSFC team has a number of issues and concerns with

these methods for their application to engineering design problems. Most of these concerns have

been voiced earlier in the report. A summary list is provided below:

1. Implementation: Finite Elements/Other Models. No specific guidelines on how to inte-

grate complex failure models into a probabilistic framework have been documented, although

response surface methods are recommended. If engineers are going to make use of reliability
methods, then it is essential that the probabilistic analysis tools can be linked to existing analysis
tools, such as finite elements. If the basic link is to be a response surface approach (design of

experiments), then the engineer must understand what assumptions are fundamental to the problem.

2. Life Driver Distribution Characterization. What distribution is the engineer to use for

characterizing a specific parameter, such as the material modulus of elasticity? Curve-fitting routines
and best-fit equations are not provided with the PFA methods. If test data are available, then the

preferred method is to model the data with a best-fit distribution. However, in new designs, many of

the data parameters are not test derived. Which distributions are recommended for these parameters
and what are their advantages and limitations? Also, computer software is needed for checking out

which distributions and parameters are sensitive to design. Basically, the PFA methods l_rovide no

specific guidelines or tools that help the engineer answer these questions.

3. Probabilistic Design Computational Methods. The PFA methods are currently restricted

to a Monte Carlo simulation computational scheme. The MSFC team agrees that simulation is the

fundamental probabilistic analysis tool. However, it is also recognized that simulation is very time

consuming and expensive for complex models. If PFA is to have any kind of application to practical

engineering problems, then it must be structured with other computational methods that will speed

up the analysis solution process. A number of other methods may have application. Also, "efficient"

Monte Carlo simulation shows great promise.

4. Computer Software. The PFA computer software is a FORTRAN coded "stand-alone'"
software package that is structured in modular fashion. The modular design gives it flexibility to

work a variety of problems; but it is problem specific, and, therefore, requires reprogramming for each

problem. This feature makes the PFA software package a good research tool, but a poor design tool.

Essentially, the PFA programs should be restructured to make them user friendly. For example, the

software should be structured to give the designer a menu of distribution choices for a parameter,

and plots of these values.

5. PFA Dgf0mentation. The reports that the JPL team have documented on the PFA

methods are extremely difficult to penetrate and understand. The reports were written for those

individuals that have a detailed understanding of probability theory and Bayesian statistics. They

have not been written for use or application by the average engineer. This is a fundamental error of

the JPL teams approach; i.e., not to adequately explain within their documents the details of how to
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work problemsusing the PFA methods.A betterapproachwould have beento show basic funda-
mentalsand to illustrate them with anexample,so that an engineernot versedin thesetechniques
could penetratethe theory and work a simpleexampleto validate it. Documentationwasstructured
for publication in technicaljournals,not for workingengineersto understand.

6. Statistical Methodology

a. Limited to "Left-Hand" Tail Problems. The standard JPL methodology handles the

case of simulating the left-hand tail of a Weibull distribution. However, many problems are not

concerned with "early" failure, but with exceeding a fixed value. The focus is then on the right-hand

rather than left-hand tail of the failure density. This is the case, for example, in the cantilever beam
example where failure is defined as deflection exceeding Xo, where Xo is given. The current JPL

approach is to "shift" the right-hand tail to a left-hand problem by considering the set { 1/X}, where

{X} is the set of simulated values. The apparent problem with this approach is that there seems to
be no justification why the set { 1/X} follows a Weibull distribution. The mean and standard deviation

values characterizing 1/{ 1/X} and {X} do not agree; in fact the differences increase as the number of

simulations increase. The PFA methods must be restructured to handle this set of applications (i.e.,
right-hand tail applications).

b. Restricted to Burr Distriboti0ns. After obtaining a set of simulated failures, the

statistical methods and FORTRAN programs used to determine reliability are restricted to a

Weibull distribution where the parameter lambda ranges over a gamma distribution (known as the

Burr distribution). The Burr distribution is just a method for fitting the very extreme left-hand tail

region of the distribution using three parameters. Should not the choice of model distribution be

governed by the simulated data? Of course, this approach would interfere with the "back-end"

Bayesian statistics. However, the MSFC team believes the best approach to using probabilistic

methods as a design tool is to not use a Bayesian logic. It makes more sense to model the data with

the best distribution fit possible, especially for the purposes of data base development.

c. Precision. Confidence. and Assurance Statements Confusing. A confidence level must

be established for reliability estimations. After applying the JPL methodology to the cantilever beam

problem and investigating a number of example problems, it appears that the JPL analysis tools are

structured to handle confidence interval (or assurance as they call it) one specific way; i.e., to

characterize confidence on the variable lambda as it ranges over a gamma distribution. A more

general approach might be to put a confidence interval on the final simulated tail distribution using a
nonparametric technique.

d. Structured to Handle Bayesian Updating (Limited Application). As the MSFC team

understands Bayes updating laws, the probabilistic failure model results characterize the prior

distribution, and the test data or flight data are used to update this distribution. In most cases, if a

structure fails during qualification testing or flight, it is redesigned. A redesigned structure will be

characterized by a new failure model, and the Bayesian statistics will not be applicable. For those

cases where a failure does not occur, and Bayesian updating is performed, a less conservative

reliability estimate will result--which may be applicable to life limit extension. From our viewpoint,

Bayesian updating is not directly applicable to design problems, or problems that are structured to
statistically characterize the likelihood of a specific failure mode. In those cases where we revisit the

probabilistic failure model, the new information would be used to update or modify the driver

distributions. The bottom line is that the MSFC team believes Bayesian updating is a very small and
minor part of the whole engineering design process.
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7. Materials Characterization (S-N Curves). The methodology write-up for "materials
characterization" needs to be clarified so that the underlying ideas are more easily understood. Also,

over the past 50 years, numerous documents have been written on fatigue. And there are several
methods for characterizing fatigue data uncertainty. Exactly, what is different about the PFA

approach is difficult to understand. The bootstrapping methods are very interesting and should be

better documented with examples.

8. Model Accuracy Factor. The PFA methods use a modeling error factor that is uniformly

distributed as an input or driver variable. What is the justification of assuming both conservative and
nonconservative values; i.e., above and below 1? Would it not be more reasonable to use a constant
value from the most conservative end of the distribution? In addition, it appears to us, that a better

method for including modeling error and other inaccuracies is to incorporate them with the confidence

regions of reliability at the end of the process.

C. Design Application/Class of Problems

The PFA methods are best structured to handle problems where the life variable can be

expressed by a closed-form equation set. Also, if reliability predictions are required and the life
variable defines an "exceedence type problem," then the life variable must be transformed into a

left-hand tail distribution. With respect to these two findings, a number of questions remain to be

addressed: (1) What are the procedures to follow to determine a closed-form equation set from a

complex finite element model (response surface approach is one alternative, are there others)?

(2) What are the transformations that map into Weibull space for working exceedence type

problems? (3) What are the underpinning assumptions in the PFA process? (4) What are the

convergence criteria?

Application of the PFA methods to sensitivity studies on driver variables offers the greatest

advantage of the probabilistic approach to design. In high performance systems, such as rocket

engines, it is extremely important that an engineer understand in detail the influence of driver
uncertainties on the design. However, the PFA methods are not structured to automatically calculate

the sensitivity values, a trait of a good design tool. The PFA process has been designed for

application to specific fatigue and fracture type problems. Several specific examples have been

completed by the JPL team. The engineer must keep in mind that any predicted reliability number is

only an estimate, based on problem assumptions. Also, the accuracy of the reliability number is very

difficult to determine. In no case should these analytical values be accepted, or used for

certification. True reliability or risk must be based on data.

IV. MATERIAL CHARACTERIZATIONDJPL FATIGUE LIFE PROGRAM

MATGRM/MATCHR, AN EVALUATION

A. Stress/Life Statistical Analysis

The purpose of this section is to describe the PFA fatigue model and how it can be duplicated

using a much simpler method. The fundamental steps of least-squares curve fitting will be sum-
marized, followed by an example. Additional background information is given in references 5 and 16.
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The PFA statistical fatigue life model is basically a least-squarescurve fit with a Weibull
distributionon life ratherthanthecommonlyusedlognormaldistribution.

Thebasicstepstakenfor a fatiguelife modelareasfollows:

(1) Collect raw data; stress, S and corresponding cycle life, N. Some data on Waspaloy,
given below in table 1, will be used for this example.

Table 1. S-N data for Waspaloy.

Stress (lb/in 2)

110,000

Cycles (N)

39,600

log (S)

11.61

log (N)

10.59

120,000 11,349 11.70 9.34

120,000 3,749 11.70 8.23

130,000 4,163 11.78 8.33

130,000 3,824 11.78 8.25

140,000 4,743 11.85 8.46

160,000 1,019 11.98 6.93

160,000 677 11.98 6.52

160,000 636 11.98 6.46

(2) Assume a relationship of the form,

N=AS m ,

where,

N = cycles to failure

S = stress amplitude

m = fatigue strength exponent

A = fatigue strength coefficient

which may be written in log form as

In(N) = ln(A )+mln(S) ,

which has the form of a straight line in log space,

y = a+bx ,
where,

y = log N

x = log S

b=m

a = log A.
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(3) a and b are estimated from the data using the least-squares method. This is a well-

known approach described in most statistics texts. The following parameters are

calculated from stress-cycle life data:

n

Sxx = _.= (X/---X)2 ,

n

Syy =/_1'= (Yi-_))2 ,

where,

x,- = ln(Si), log stress value

S_y= _.=(xwx)(y,-Y) ,

._ = ln(_, mean log stress

Yi = In(N/), log cyclic life

y = n(_, mean log cyclic life.

The following values are calculated from the data given in this example,

Sx_ = 0.16035,

Sty = 14.521,

Sky = -1.419668.

Least-squares curve fit constants are calculated directly as,

Sx_.
mean value slope, b = S---_= 112.7372 ,

mean value intercept, a = y-b_¢ =-8.85338 .

(4) The least-squares fitted curve can now be compared with individual data points to
determine whether or not the curve fit is adequate over the stress range of interest. A

plot of the data with curve fit in log space is shown in figure 7.
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Figure 7. Waspaloy S-N data plotted with curve fit.

(5) Next, determine estimates of the mean and variance of the cycle life for a given stress
level.

mean value cycle life, y = a+bx ,

Syy-(S_y)
variance, az = --=

n-2

The mean and variance are statistical descriptions of the data in log space. If you assume that

log(N) is normally distributed about its average value, cycle life, N, will have a lognormal
distribution.

For our example, we will arbitrarily select 145 ksi for a stress level and calculate the average

cycle life and standard deviation for that stress.

11y = a+b log(145,000) = 7.5193 .

The standard deviation is considered to be constant regardless of stress for this example,

_/ Syy-(S_) 21Sx_(rr = n-2 = 0.528 .

(6) The last step is to fit a probability distribution to the data, such as a normal or

Weibull distribution. For this example, assume a normal distribution using the

mean and variance calculated above. This will result in a lognormal distribution of

cycle life.
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The procedure outlined contains the basic steps used by the PFA fatigue life software. The

PFA program, MATGRM, performs a least-squares curve fit and then fits a Weibull distribution to

cycle life. The program then performs a Monte Carlo simulation at a specified stress level.

To verify the PFA program, the six steps listed were followed. A lognormal distribution was
assumed and 1,000 Monte Carlo simulations performed. The distribution of cycle lives was then

plotted as a histogram. The same Waspaloy data were input into MATGRM with 1,000 simulations

and plotted. Results are compared in figure 8.

Figure 8.
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The histogram comparison verifies that a least-squares curve fit with a lognormal distribution

is similar to JPL's program with a Weibull distribution. Differences between lognormal and Weibull
distributions can be debated, but they both accomplish the intended job; to put a distribution on life

with only positive values allowed.

B. Strain/Life Statistical Analysis

Plastic strain fatigue data can be treated the same as stress fatigue data, in some cases, by

linearizing in log space with the power law relation,

where,

A = plastic strain life coefficient
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b = plastic strain life exponent

N = number of fatigue cycles

Aep = plastic strain range.

Hence, strain fatigue data can be curve fitted with the least-squares method as previously
described. A linear curve fit in log coordinates may be sufficient for the data. In fact, the Waspaloy

data in table 2 and the matching curve fit in figure 9 show this to be the case.

Table 2. Waspaloy strain life fatigue data.

Cycles, N Percent Strain, Ae log(N) log(Ae)

74 3 4.30 -4.20

186 2.5 5.23 -4.38

867 2 6.77 -4.61

12 4 2.48 -3.91

6 6 1.79 -3.51

48 3 3.87 -4.20

44 3 3.78 -4.20

61 3 4.11 -4.20

40 3 3.69 -4.20

586 2 6.37 -4.61

348 2 5.85 -4.61

363 2 5.89 -4.61

390 2 5.97 -4.61

119 3 4.78 -4.20

145 2.5 4.98 -4.38

592 2 6.38 -4.61

1,396 1.5 7.24 -4.89

5,086 1 8.53 -5.30

20,000 0.75 9.90 -5.59

In some cases, however, the strain data are nonlinear when plotted in log coordinates. A

nonlinear curve fit in log space is accomplished by separating the strain into elastic and plastic

components and curve fitting each separately. The total strain relation then becomes,

AE A£p Aee
2 =T+T =ANb+CNd"

where the curve fit constants A, b, C, and d are determined by performing least-squares curve fits to

the elastic and plastic portions of strain.
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Figure 9. Curve fit of Waspaloy strain life data.

C. Conclusion/Comments

The PFA fatigue life program was evaluated on the basis of its understandability, ease of

use, and application to a typical fatigue problem.

Theory for the materials characterization program is found in section 2.1.2 of the PFA core

document. 4 The theory section has several major omissions: (1) no discussion of the basic

fundamentals of fatigue or its statistical analysis, and (2) no discussion of the lognormal distribution

for cycle life. The lognormal distribution should be the default distribution, yet the PFA program does

not even have it as an option nor any discussion as to why the lognormal was omitted. The advanced

level of mathematical and statistical notation makes it hard to get to the core of what the program

really does.

The materials characterization program structure is described in two separate sections, one
titled "Materials Characterization Software" and another titled "Materials Characterization Pro-

gram." There is some redundancy here because both are describing the same program. The first

section, 4.1, consists of a detailed, 60 pages, flowchart, with a brief written description of the

program and major subroutines. The other section, 7.3, gives another flowchart and description of

variables. Documentation is acceptable, but hard to follow and understand.

A user's guide is provided in section 6.3, "Materials Characterization User's Guide." This

section is useful for actually running the program. It does a good job of describing the input and

output with examples provided. A program listing is provided in section 7.3.1.4. The PFA materials

characterization program consists of 6,707 lines of FORTRAN code and 41 subroutines.
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V. RESPONSE SURFACE METHODS--ANALYSIS OF A CANTILEVER BEAM

The increased use of probabilistic structural analysis methods has initiated a need for a cost-

effective and efficient way of interfacing with the finite element method. The main reason being that it
is not pragmatic to conduct thousands of finite element runs. Therefore, response surface methods

have been proposed as the link between probabilistic methods and the finite element method. In

addition, response surface methods have been available for many years and are commonly applied in

the pharmaceutical, chemical, and testing industries to characterize their respective outputs.
References 7 through 11 provide a good background on the application and theory of such methods.

A. General Background

The basic concept of a response surface method as applied to finite elements consists mainly
of fitting a chosen equation, usually a linear or quadratic polynomial, to a relatively small number of

planned finite element runs. The number of runs needed depends on the number of parameters

assumed to affect the response and the number of levels through which each parameter varies. For

finite element applications, all of the parameters considered are required to be quantitative and

continuous within the region of interest.

The purpose of the research being presented in this section was to investigate the utility and

accuracy of applying response surface methods to finite element results. For this purpose, response

surface analyses, using the finite element method, were performed on a cantilever beam model under

elastic and elastic-plastic conditions. In addition, two response surface designs were chosen for

these analyses, and the results were compared. A cantilever beam was selected because of its

simplicity and availability of a closed-form solution in the elastic case, and readily derivable iterative
solution in the plastic region.

The first step in conducting a response surface analysis, once the problem has been defined,
is to determine the number of parameters to be considered. For the case of the cantilever beam,

three parameters were assumed, namely, Young's modulus, beam tip load, and beam length. Table 3

shows the minimum, nominal, and maximum values chosen for each one of the parameters.

Table 3. Parameter values for cantilever beam.

Beam Length (L) Tip Load (P)
(in) (lb)

Minimum 9.9 855

Nominal 10 900

Young's Modulus
(E) (lb/in 2)

2.70E+07

3.00E+07

Maximum 10.1 945 3.30E+07

Percent off nominal +/- 10 5 10

The second step in the process is to select the equation to be fitted and to design an experi-

ment matrix appropriate for the equation chosen. There are several response surface design matrices

available in the literature to fit first- and second-order equations. The two particular designs

selected for the cantilever beam example were a 23 factorial design, 7 and a Box-Behnken design, s 11
The first design consists of three parameters, each varied at two levels, maximum and minimum, and

used to fit the following equation:
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F = ko+klL+k2E+k3 P , (1)

where F is the value of response, L is the length of the beam, E is Young's modulus, P is the tip

load, and ko, kl, k2, and k3 are the constant coefficients that result from the response surface

analysis. There are a total of eight finite element runs needed to fit equation (1). Table 4 shows the

combinations of the parameter values needed for each run. The second type of design chosen for the

cantilever beam example, the Box-Behnken design, consists of varying parameters to three levels;
minimum, nominal, and maximum. In addition, this kind of design is used to fit a quadratic polynomial

equation, such as:

F = to+t 1L+t2E+t3P+t4EL+tsPL+t6EP+t7L 2+tsE 2+t9P 2 , (2)

here to to t 9 are the constant coefficients to be determined. The Box-Behnken design requires a total

of 13 finite element runs. Table 5 shows the value combinations for the cantilever beam using this

kind of design.

Table 4. Cantilever beam parameter values for 23 design.

Runs Beam Length (L) Young's Modulus Tip Load (P)

(in) (E) (lb/in 2) (lb)

1 9.9 2.70E+07 855

2 10.1 2.70E+07 855

3 9.9 3.30E+07 855

4 9.9 2.70E+07 945

5 10.1 3.30E+07 855

6 10.1 2.70E+07 945

7 9.9 3.30E÷07 945

8 10.1 3.30E+07 945

Table 5. Cantilever beam parameter values for Box-Behnken design.

Runs Beam

1

2

3

4

5

6

7

8

9

10

11

12

13

Length (L) Young's Modulus Tip Load (P)
(in) (E) (lb/in 2) (lb)

9.9 2.70E+07 900

9.9

10.1

10.1

9.9

9.9

10.1

10.l

10

10

10

10

10

3.30E+07 900

2.70E+07 900

3.30E+07 900

3.00E+07 855

3.00E+07 945

3.00E+07 855

3.00E+07 945

2.70E+07 855

2.70E+07 945

3.30E+07 855

3.30E+07 945

3.00E+07 900
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For either of the designsdiscussedabove,the output to be obtainedfrom the finite element
runs is F (F could be displacements, stresses, strains, etc). Also, note that the number of finite

element runs required in either design is greater than the number of unknowns (K's) to be

determined. Therefore, a method such as least squares is used in order to solve for the constant

coefficients. Once the least-squares approximations are complete, the response surface equation is

fitted and one can proceed to verify its accuracy. In the case of the cantilever beam example, the
fitted surface results of both designs were compared to theoretical results.

B. Elastic Case Study

The ANSYS finite element code Rev. 4.4 A (ref. 12) was used to perform the runs. A model

using the three-dimensional (3-D) 20-node isoparametric solid element type consisting of 80

elements and 621 nodes was built. This model is shown in figure 10 and the critical locations are

identified for stress and displacement. The relatively fine mesh for this problem was selected to

prevent possible model inaccuracies due to mesh density, thus eliminating mesh density as a

parameter.

l"_N°de 2; C,rit. Stress p P/3

Fixed end. _ x

Figure 10. Cantilever beam finite element model for elastic solution.

The design matrices, tables 4 and 5, for each design were used to perform the finite element

runs. The least-squares approximations of the constant coefficients for the designs were also
obtained. The values of these coefficients are shown in table 6 for stresses (s), and displacements

(y) at the critical locations.

In order to check for the accuracy of the fitted polynomials with the coefficients of table 6,

closed form solutions were obtained from reference 13 for the displacements and stresses at the

critical locations. The beam tip displacement theoretical solution is

where,

y = PL31(3EI) , (3)

I = (1/12)bh 3 (3a)

I is the moment of inertia, b the base of the beam, and h is the height. From figure 10, b = h = 1,
therefore, I = 1/12. The maximum stress from the theoretical solution is

s = Mc/l, (4)
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Table6. Constantcoefficientsfor elasticanalysis.

Coefficient

0
1
2
3
4
5
6
7
8
9

Linear Fit (Equation

y-Disp (Node 186)

(in)

2.423E-01

-3.644E-02

4.072E-09

-1.357E-04

(1)) Quadratic Fit (Equation (2))

s-Stress (Node 2) y-Disp (Node 186) s-Stress (Node 2)

(lb/in 2) (in) (lb/in 2)

-5.306E+04 2.676E-01 -8.953E+01

5.306E+03 -4.284E-02 2.689E+01

2.133E- 18 -4.057E-09 1.092E-07

6.050E+01 1.507E-04 1.437E+00

1.215E-09 -1.325E-13

-4.208E-05 5.905E+00

4.523E- 12 -6.487E- 17

3.978E-04 -1.722E+00

-1.348E-16 -1.820E-15

-4.231E- l0 1.129E-05

where,
M = PL . (4a)

M is the applied moment and c is the distance from the neutral axis to the extreme fiber. From figure

10, c = 1/2. By making all the substitutions into equations (3) and (4) then,

and

y = 4PL3/E , (5a)

s = 6PL . (5b)

Equations (5a) and (5b) are written in terms of the three parameters chosen for the response

surface analysis. In addition, the percent error between the theoretical and the fitted surfaces was

computed as follows:

and

y percent error = 100*(Ytabl e 6-Yeq(5a))[Yeq(5a)

S percent error = l()()*(Stabl e 6--Seq(5b))JSeq(5b) •

(6a)

(6b)

Figure 1 la displays the y percent error surface (equation (6a)) using the linear fit coefficients

(equation (1)) from table 6 for a constant Young's modulus of 33e6 lb/in 2. This surface provides the

greatest error obtained for all moduli (E) between the range of 27e6 and 33e6 lb/in 2. Therefore, only
the modulus for 33e6 lb/in 2 is shown here. In addition, this surface displays the y percent error

dependent upon the variation of beam length L and beam tip load P within the ranges chosen in figure
10. The maximum error obtained using this linear fit for the tip displacements was about 1.5 percent

and occurs on a beam 10.1-in long, carrying a load of 945 lb. Figure 1lb shows the same information

as in figure 1 la with the difference that in figure 1 lb the coefficients from table 6 for the quadratic fit

of equation (2) were used instead of the coefficients for the linear fit. Figure lib indicates a

maximum error of about 0.82 percent occurring on a beam 9.9-in long under a load of 855 lb.
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y%error

E=33e6

880 900 920 940

Figure 1 la. y percent error from linear fit response versus theoretical results.

y%error

0.84

0.82

E=33e6

86O
0.74 F

0.72

Figure 11 b. y percent error from quadratic fit response versus theoretical results.
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For the case of the s percent error, figures 12a and 12b display the errors associated with the
constant coefficients for s from table 10 for the linear and quadratic fits, respectively. It is important

to note that the dependence on Young's modulus is zero. This is obvious in the stress equation (5b)
and was also confirmed in the results of the response surfaces. Therefore, figures 12a and 12b are

valid for all values of Young's modulus. For the case of the linear fit, shown in figure 12a, the

maximum error in s is about 0.90 percent and occurs on a beam 9.0-in long with a load of 945 lb. The

surface for the quadratic fit (fig. 12b) indicates a maximum error of about 0.86 percent on a beam

9.90-in long under a load of 855 lb.

S%error

_0,05.'i i.-...,'".'..'."..i" " /i' iiiiiiii.... ....... ..'/'.
9.95

Figure 12a. S percent error from linear fit response versus theoretical results.

S%error

86o
- 0.82 p 880

• _" ..... _, .... .
_ " t0 ...... _ i_ ..... ::'" .............. '

" " 9.95 X ........... ._ .............. ,.. . ....... . '

Figure 12b. S percent error from quadratic fit response versus theoretical results.
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It can be concluded that in this elastic analysis both response surfaces adequately fit the
cantilever beam problem having length, Young's modulus, and tip load as parameters with the
variations indicated in table 3. In addition, it is further concluded that the difference between the

linear and quadratic fits for this particular example were negligible. This would make the linear fit

more desirable since it requires only eight runs. Also, the coefficients for the linear fit (equation (1))

provide the sensitivity of the response due to each parameter because they are the partial

derivatives dF/dL, dF/dE, and dF/dP. However, before a general recommendation can be made on

specific response surface designs for elastic analyses, more work needs to be done. For example,

research is necessary on the maximum range of the parameters for which the response surfaces

would continue to be satisfactory for different kinds of problems. Also, response surface analyses

need to be performed on problems with high stress concentration that have available closed-form

solutions. These two areas, among others, would help in providing a better indication of the
adequacy of specific response surface designs for general finite element modeling use. Intuitively, it

seems that no one design would serve for all problems unless the explicit form of the relationship

(i.e., inverse, exponential, etc) between the parameters is known a priori.

C. Elastic-Plastic Case

The ANSYS finite element code Rev. 4.4a was also used to perform the elastic-plastic runs.

For the model shown in figure 10, tensile yielding begins at node 2 or any node at the same end and

at the outermost fibers. However, ANSYS only recognizes yielding when the equivalent stresses at

the integration points of the elements are greater than the yield stress. Since, the integration points

are located a distance away from the corner nodes of the elements which contain node 2, the

outermost fiber yields before ANSYS establishes yielding at the integration points. Therefore, the

mesh of the model shown in figure 10 had to be refined with an increased density of elements at the

extreme fibers. The refined model is shown in figure 13. In addition, the refined model is composed of

552 eight-noded 3-D isoparametric solid elements and 936 nodes. The response designs used for

the elastic analysis were retained for the elastic-plastic analysis and the values shown in tables 3

through 5 were applied to the refined model. Plasticity was introduced by setting a yield stress, Sy, of
50,700 Ib/in 2 and by choosing the bilinear kinematic hardening option in ANSYS with the stress-

strain curve shown in figure 14. Finally, the least-squares approximation of the constant coefficients
for the displacements, y, stresses, s, and, total strains, et, at the beam's critical locations and for the

first- and second-order designs are shown in table 7.

y Node 2; Crit. Stress

P/3

Fixed end.

Node 935; Crit. Displacement

Figure 13. Cantilever beam finite element model for plastic analysis.
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stress

sy=50,70C

50,700/E

Figure 14.

sy=50,700

E=27e6-33e6

Et=15e6

v=.33

strain

Stress/strain curve for plastic analysis.

Table 7. Constant coefficients for finite elements of elastic-plastic case.

Linear Fit (Equation (1))

y-Disp s-Stress et-Strain

Coeffi- (Node 186) (Node 2) (Node 2)

cient (in) (lblin 2) (in/in)

50700/E+

1

2

3

4

5

6

7

2.451E-01

-3.660E-02

2.014E+04

1.549E+03

-1.027E-03

5.066E-05

Quadratic Fit (Equation (2))

y-Disp s-Stress et-Strain

(Node 186) (Node 2) (Node 2)

(in) (lb/in 2) (in/in)

50700/E+

2.138E-01

-3.741E-02

4.292E+05

-2.858E+04

7.657E-03

2.528E-04

4.071E-09 -2.292E-05 1.744E-13 -4.040E-09 8.344E-04 1.127E-10

-1.372E-04 1.843E+01 6.029E-07 2.119E-04 -5.843E+02 -2.497E-05

1.214E-09 -4.387E-05 -9.972E- 12

-4.517E-05 3.397E+01 1.432E-06

4.516E-12 -5.083E-07 3.947E-15

2.612E-04 3.960E+01 -5.859E-05

-1.349E-16 7.068E-13 -2.653E-19

-1.783E-08 1.546E-01 6.197E-09

To verify the accuracy of the fitted response of the elastic-plastic beam, a theoretical solution

was derived by the using the concepts described by Phillips 14 and Johnson and Mellor. 15 Figure 15
shows a rectangular bar under symmetrical loads P. This figure can be idealized as two cantilever

beams where one end of each beam represents the rigid connection of the other. The solution derived

for this case using a linear hardening stress/strain curve such as figure 14 is,

and

for small y

2EtE 3bh 3k 3+(3E 2(E-E¢)sybh 2-3E 3P(L-x) )k 2+((E_E,)s3yb) = 0

k = 1/R = (d 2y/dx 2)/( 1+(dy/dx) 2) 3/2= d 2y/dx 2 ,

et = yk ,

(7a)

(7b)

(7c)

where
(7d)
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4

9 _r crit. stresses at O.

boundary R_

A-A

t'
L

k= 1/R

Mo=PL

R=radius of curvature

Figure 15. Rectangular bar under load P (symmetrical about o).

This solution was iteratively solved for each of the input combinations shown in tables 4 and

5, and linear and quadratic response surfaces were fit for displacements, stresses, and total strains.

However, by using this procedure, the verification in the plastic case became the comparison of two

response surfaces; one for the finite element results and the other for the theoretically derived

iterative results. This approach undermined the evaluation of the response surface method for the

elastic-plastic case. Nevertheless, the constant coefficients for displacements, stresses, and total
strains for the theoretically derived solution are shown in table 8.

Table 8. Constant coefficients--theoretical solution of elastic-plastic case.

Coefficient

Linear Fit (Equation (I)) Quadratic Fit (Equation (2))

y-Disp
(Node 186)

(in)

s-Stress

(Node 2)
(lb/in z)

et-Strain

(Node 2)

(in/in)

0 2.454E-01 -4.829E+04 -2.804E-04

1 -3.655E-02 6.417E+03 1.857E-04

2 4.041E-09 -1.316E-05 -5.696E- 11

3 -1.361E-01 3.889E+01

4
2.054E-06

y-Disp

(Node 186)
(in)

s-Stress

(Node 2)
(lb/in 2 )

et-Strain

(Node 2)

(in/in)

2.083E-01 -5.053E+05 3.539E-03

-3.654E-02 -3.444E+03 7.859E-06

4.072E-09 -5.238E-05 -5.744E-11

2.167E-04 1.197E+03 -4.474E-06

1.212E-09 -8.448E-05 -5.639E-12

5 -4.512E-05 -9.873E+01 5.351E-07

6 4.483E-12 -9.358E-07 -6.239E-14

7 2.221E-04 4.944E+03 -6.749E-06

8 -1.340E-16 2.897E-11 1.884E-18

-1.966E-08 -8.222E-02 1.690E-09

The comparison of the results of the two response surfaces are presented here only for
completeness. The percent error between the two surfaces (finite elements versus theoretical) were

computed in a similar fashion as equation (6).
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y percent error = 100*(Ytabl e 7-Ytable 8)/Ytable 8 , (8a)

et percent error = 100*(ettable 7-ettable 8)/ettable8 , (8b)

s percent error = 100*(Stable 7-Stable 8)/Stable 8 . (8c)

Figures 16a and 16b show the y percent error of equation (8a) for the linear and quadratic fits,

respectively. The y percent error for either curve is relatively low and the difference between the fits,
as in the elastic case, is negligible. In addition, figures 17a and 17b show the et percent error of

equation (8b) for both fits. Again, the difference between fits is negligible. However, the percent
error between the finite elements and the theoretical solution indicates a maximum of about 5-

percent error for figure 17a and 6 percent for figure 17b. This error could be a stack up of errors

caused by the creation of both response surfaces plus the inherent finite-element modeling error.

Finally, the s percent error of equation (8c) is shown in Figures 18a and 18b, where similar results,
as in the total strains, are indicated. The only conclusion that can be drawn from the elastic-plastic

analysis regarding the response surface method is that the differences between the linear and

quadratic fits were negligible.

y%error

E=30e6

0.6

0.4 ' ...I¸¸¸¸̧........ ...
Z

• X .10 . .......... ..:"" ...... ."'"
.........., ." . . .•:,i

0 tO00

Figure 16a. y percent error from linear fit response versus theoretical plastic results.
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y%error
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0.76

E=30e6
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L
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Figure 16b. y percent error from quadratic fit response versus theoretical plastic results.

et%errc

6

860

,_r if) 880 900 920 940

Figure 17a. et percent error from linear fit response versus theoretical plastic results.
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et%err

Figure 17b. et percent error from quadratic fit response versus theoretical plastic results.

S%error
4

2 _ "
r L ,.

940

Figure 18a. S percent error from linear fit response versus theoretical plastic results.
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Figure 18b. S percent error from quadratic fit response versus theoretical plastic results.

VI. HPOTP DEMONSTRATION EXAMPLE

A. Introduction

This effort was performed as an example of incorporating a large finite element model into a

probabilistic analysis. An ANSYS structural model is used to predict material strain at a stress
concentration on a Waspaloy turbine disk. Model strain is compared with strain life data to estimate

the number of mission duty cycles to failure. Methods generally described as response surface

analysis (multiple regression) are used to formulate a closed-form equation for material strain as a

function of temperature and yield strength. Least-squares methods are employed to curve fit cyclic

strain-life data. A Monte Carlo simulation is performed to predict the distribution of mission duty

cycles to failure. After a detailed description of the individual steps, a concluding summary is given.

1. Problem. Six HPOTP first-stage turbine disks were found with cracks at the interstage

seal pilot rib. 6 A sketch of the disk and location of cracking is shown on figure 19. The HPOTP disk

undergoes a severe thermal shock during a normal mission duty cycle. When the pump shuts down,
hot gas (456 to 940 °F) is replaced with hydrogen gas; within a few seconds, the gas temperature

drops to about 0 °F. A typical thermal profile is shown in figure 20. The large drop in gas temperature

causes a significant thermal gradient in the Waspaloy disk, resulting in a high strain gradient due to

the coefficient of thermal expansion. As shown in figure 19, there are small (0.030-in) radii on the

seal pilot rib. Cracks naturally originate in the radii due to a strain concentration effect and low cycle

fatigue (LCF). For this problem, failure is defined as the initiation of a crack.

2. Description of Analysis. The purpose of this analysis, whether deterministic or prob-

abilistic, is to predict the number of mission duty cycles to failure. This analysis involves several
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Figure 19. HPOTP first-stage turbine disk.
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Figure 20. Hot gas temperature-oxidizer preburner.

steps: (1) A thermal model is run to generate time-dependent temperature profiles for the disk. These

temperature profiles are different, depending on the assumptions made for engine speed and gas flow.

(2) Temperature profiles generated from the thermal model are then used as input to a structural model.
The structural model also uses material properties and includes the effects of geometry. Material strains

due to the thermal gradient are output. The structural model is a large, solid element model with

nonlinear, plastic strain capability. A wire frame plot is shown in figure 21. (3) Strain data from the

structural model are then used with strain-life cyclic test data to estimate the number of cycles to failure.
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Figure21. ANSYS15° structuralmodel.

B. Probabilistic Approach

As just described, this problem could become very complex if uncertainties in temperature,
strain, material properties, and modeling error are fully considered. In order to work the problem in a

reasonable amount of time, the number of input variables which were allowed to vary as inputs to the

finite element model were reduced to temperature and yield strength. These variables were perturbed in

a somewhat arbitrary manner, the purpose being to demonstrate how a response surface might be

generated. Due to the model size, only four perturbation runs were made.

Another simplification is that of distribution assumptions for temperature and yield strength.
Both random variables are assumed to have the lognormal distribution due to the multiplicative form of

the response surface and the need to restrict strain to values greater than zero.

Uncertainties in cyclic life are accounted for with a least-squares fit to strain-life data which is

linear in log space. A nonlinear least-squares fit is possible. More information on this subject can be
found in references 16, 17, and 18.

1. Response Surface A response surface was fit to strain data from four model runs. Strain data

with corresponding temperature and material strength are given in table 9. The information was

generated by Swanson and Goode. 19

Table 9. Disk strain versus temperature and yield strength.

Run No.

2

Output

er(%)

1.605

3.169

Strain

log eT (%)

0.4731

1.1534

Input Temperature

Temperature
(R)

916

1,400

log

Temperature

6.82

7.244

3 6.892 1.9304 1,400 7.244

4 2.581 0.9482 1,400 7.244

Input

Sy
(ksi)

140

140

Yield

log Sy

4.942

4.942

125

150 5.011

4.828
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is,

Two forms of response surfaces were fit to the data, one linear and one nonlinear. The linear fit

e = fl O+fl I(T-To)+ _ 2(Sy-Syo) , (9)

where/3o is mean value strain and/31 and _ are constants. Using least-squares multiple regression, we

solve for the constants. Note there are three unknowns and four sets of data. Least squares allows use of
all the available data. The calculated values of constants are,

/30 = 3.5618

The nonlinear response surface is,

which can also be written as,

• /31 = 0.004776 , _ = -0.17842 .

e. =/3 oT_'S#r 2 , (10)

log e = log]3 o+fl I logT+fl 2 logSy .

Again, using multiple regression, the constants are,

/30 = 13.568, /31 = 2.031 , ]32=-5.464.

(11)

Typically, the response surface utilized depends on (1) which equation best fits the actual model data,

and also (2) the type of probability distributions selected for the random variables. Table 10 summarizes

the two curve fits and shows that, overall, the nonlinear response surface is a better fit.

Table 10. Response surface comparison.

Temp. Mat Yield

916 140

1,400 140
1,400 125

1,400 145
Mean Mean

Value Value

1,279 138.75

Linear Response Surface

Model Percent

Strain Strain Error

1.61 1.605

3.92 3.169

6.59 6.892
3.02 2.581

0.00

0.24

0.04
0.17

Average
error

0.11

Nonlinear Response Surface

Strain Model Percent

(Percent) Strain Error

1.605 1.52

3.169 3.60
6.892 6.68

2.581 2.97

0.06

0.12

0.03

0.13

Average
error

0.08

2. Statistical Properties of Random Variables. Statistical properties of the random variables

temperature and material strength must be determined or estimated before a probabilistic analysis can

be completed. The mean values used in this problem example are given in table 10. The numbers shown

are the average values of four inputs. Although these values are not necessarily correct, they were

utilized to work this problem. Normally, some data base or experience base is used to determine

statistical properties. Similarly, the standard deviation values were assumed and are not based on any
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real database.Theprocessof obtainingstatisticaldata(meanandvariance)isa fundamental concern for

each random variable. Table 11 contains a summary of the statistical properties. Notice, COV, median

value, and the other lognormal parameters are calculated from the mean and standard deviation.

Table 11. Statistical parameters for random variables.

Parameter Temperature (T)

Normal Parameters

Mean, _x 1,279

Standard Deviation, trx 200

COV, _x/llx 0.1564

Lognormal Parameters

//x 1,264

Median value, _/1 +COV_

/.t y = log[Med(x)]

2 log[ I+COVx 21O'y=

Note:

7.142

0.02417

Ify = log x is normal (/1 y and o'_), then x is lognormal.

Yield Strength (Sy)

138.75

13.88

0. 10

138.06

4.928

0.00995

3. Probability Distributions. The lognormal distribution was chosen for both independent

random variables in this problem, since it models only positive values of the dependent variable, strain.

This assumption is important, because the normal distribution model allows for negative strain values to

occur during a Monte Carlo simulation. A distribution limited to positive values was necessary, since

negative strains cannot be used with cyclic life data. To check the effect of choosing a different
distribution on input random variables, normal and lognormal distributions were compared for

temperature and yield strength (fig. 22). Notice, for random variables with positive values, the PDF's are

very similar. Model difference is more noticeable for the temperature variable, which has a greater
coefficient of variation.

0. 002

0.0015

0.001

0. 0005

Temperature PDF

O. 025

O. 02

0.015

0.01

O. 005

1000 1200 1400 1600 1800

Yield Strength PDF

:. . _ Normal
:Logn

100 120 140 160 180

Figure 22. Normal versus lognormal distributions.
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The problemof determiningstatisticalparametersfor strainis greatlysimplified if all variables
areassumedto havethesameprobabilitydistribution.By assumingthat all variablesarelognormal,the
meanandstandarddeviationfor log(strain)canbedeterminedin closed-formfrom statisticalproperties
of theindividual randomvariables.Rewriteequation(11)as,

z = log e = logfl o+fl t logT+fl 2 logSy. (12)

Lognormal parameters for z are defined as,

= logLaoT a s)aq, (13)

crz = log[(l+COV])#2 2'(1+cove) , (14)

where 7_ and Sy are median values, and COV is the coefficient of variation. Equations (13) and (14) were

verified by performing a Monte Carlo simulation of equation (12) with lognormal distributions on

temperature and yield strength. Results are summarized in table 12 for 100 to 10,000 simulations. Note,
the mean and variance stabilize and converge to the closed-form calculations.

Table 12. Lognormal parameter comparison.

Monte Carlo Simulations

Parameters Equations (13) and (14) 100 1,000 5,000 10,000

//z 1.1486 1.1400 1.1728 1.1481 1.1406

tr 2 0.3968 0.3957 0.4103 0.4093 0.4034
Z

A lognormal statistical distribution for strain has now been established and verified. The

lognormal PDF is,

(log x-//z) 2]1 exp • 20.2fax)- x
(15)

where x is the strain value. A plot of the lognormal strain distribution is shown in figure 23 and

compared with a normal strain distribution for illustrative purposes. The normal statistical parameters for
strain are calculated similarly to the preceding example. Note that with a normal distribution, the left-

hand tail contains negative strain values and is truncated in figure 23. Behavior of a distribution in the

tail regions is very important when trying to determine probability of failure. The lognormal distribution

has a thicker right-hand tail and thus a greater number of high strain values.

Note that the strain distribution given in figure 23 is the total strain predicted from a nonlinear

finite element model; it does not necessarily cycle about a zero strain value. Strain values recorded from

cyclic test data are generated from a rotating test specimen which do, in fact, cycle about zero strain, i.e.,
the ratio emin/Fq.aax = --1. The effect of strain ratio should be considered when comparing disk model

strain with cyclic test strains.

4O



O. 25

Co 0.2

tJ,
C:

_- 0.15

4.F

c 0 1
121

O. 05

Figure 23.

_____ognormal

= |

2 4 6 8 10

Strain, %

Strain distribution lognormal versus normal.

C. Strain-Life Statistical Analysis

Strain-life analysis is similar to stress-life analysis. Section IV.A of this report describes

statistical treatment of stress-life data. The cyclic strain-life data for this problem were treated with an

equation of the form,

N=A -- , (16)

where,

A = plastic strain-life coefficient

b = plastic strain-life exponent

N = number of fatigue cycles

Ac = total strain range.

Strain-life data were fitted with the least-squares method. Table 13 lists the data as received from

Rocketdyne.

Having the strain-life data, the next step is to calculate least-squares parameters Sxx, Syy, and Sxy

to obtain a straight line curve fit in log space. Equation (16) is written as,

log N = log a+b log(-_-) , (17)

which has the form

y = a+bx , (18)
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Table13. Waspaloy low-cycle fatigue test results.

Specimen
Number

29.00

Number of

C_,cles (N)
74

Y-axis

(In(N)

4.30

Strain Range, e *

(Percen0
3.00

X-axis

(In(el2))

-4.20

13.00 186 5.23 2.50 -4.38

16.00 867 6.77 2.00 -4.61

30.00 12 2.48 4.00 -3.91

27.00 6 1.79 6.00 -3.51

HC1 48 3.87 3.00 -4.20

HC2 44 3.78 3.00 -4.20

LC 1 61 4.11 3.00 -4.20

LC2 40 3.69 3.00 -4.20

HC3 586 6.37 2.00 -4.61

HC4 348 5.85 2.00 -4.61

LC3 363 5.89 2.00 -4.61

LC4 390 5.97 2.00 -4.61

64.00 119 4.78 3.00 -4.20

6.00 145 4.98 2.50 -4.38

61.00 592 6.38 2.00 -4.61

26.00 1,396 7.24 1.50 -4.89

11.00 5,086 8.53 1.00 -5.30

51.00 20,000 9.90 0.75 -5.59

where,

* Strain range is total strain range from compression to tension for strain ratio = -1.

a = log N

b=b

The following least-squares parameters are calculated from table 13 data.

Sxx = 3.91,

Syy = 70.87,

Sxy = -16.33,

mean value slope,

mean value intercept,

b = Sxy/Sxx = --4.17 ,

a = Yavg-b*Xavg =-13.26 .

42



Thenextstepis to determinethebasicstatisticalparametersfor cycle life, log[N]. Here,log[N] is
assumedto benormally distributed.For a givenstrainlevel, e/2, the mean and variance of log[N] are
calculated:

mean value cycle life,

y =a+bx , (19)

variance,

a2 = S_-,S_,-Sxx(_21 (20)
n-2

For the strain life data in table 13, o'= 0.40.

For this problem, it is assumed that the mean value slope, intercept, and variance are constant

over the range of test data. We must be careful to remember the strain level used in equation (19) is e_/2,

not total strain. During a simulation, total strain from the response surface equation must be divided by 2

before using it to calculate cycle life.

D. Monte Carlo Simulation

A Monte Carlo simulation is used to generate the distribution of cycle lives. Each simulation

consists of the following steps,

(1) Generate total strain value from lognormal distribution.

(2) Divide total strain value by 2 and use equation (19) to calculate the mean value of log[N],

y = o]-o-g(N).

(3) Use mean value log(N) and standard deviation from equation (20) to generate a cycle life

from lognormal distribution.

(4) Store the result (cycle life) and repeat steps 1 to 3 until the maximum desired number of
simulations is leached.

Figure 24 shows the results of 5,000 simulations. The cumulative distribution is used to

determine the probability of reaching a particular cycle life. A cumulative distribution is very easy to
calculate from a Monte Carlo simulation. Simulation results, such as cycle life, are sorted in order of

increasing cycle life and then saved for plotting. After sorting, each succeeding cycle life corresponds to

a particular percentage of the total number of simulations. If there are 5,000 simulations, the lowest

cycle life corresponds to 1/5,000 of the total population; the 100th lowest cycle life corresponds to

1/50th of the population. Table 14 gives some specific percentages with corresponding cycle life.
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Table 14. Number of cycles to failure versus percent of total disk simulations.

Percent Probability of Reaching a

Number of Cycles to Percent of Total Disk Particular Cycle Life Before
Failure Simulations Failure

= 1- Previous Column

56 50 50

88 60 40

140 70 30

245 80 20

547 90 10

993 95 5

E. Summary/Comments

The primary goal for this effort was to demonstrate how a finite element model could be utilized

to develop a response surface which is then incorporated into a Monte Carlo simulation of material strain

and cycle life. This work should not be considered in any way complete; however, it does serve as a

starting point for understanding the difficulties encountered in a typical application. The following
comments are made relative to this problem:
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(1)

(2)

(3)

4)

(5)

Development of a response surface from a finite element model is not a trivial matter. This

problem was greatly simplified in order to work through the steps in a reasonable amount of
time.

The structural model was not verified by test data and therefore modeling error could not be
accounted for.

The ANSYS model included material nonlinearity. This is probably not the most efficient

way to generate data for a response surface in which many runs are needed. A better

approach would be to assume linear behavior since there is only local yielding. Neuber's rule
could then be used to estimate notch strain.

The average temperature and strain values are probably not correct, but were used to work

through the problem. More effort is needed to characterize the input variables and level of

uncertainty.

There is the question of whether or not actual strains on the disk can be directly compared to
test strain data. Disk strains are local strains in a .030-in radius and are thermally induced.

Strain-life data are generated from a smooth, round fatigue specimen at ambient temperature

and are produced mechanically. Another significant difference is the strain ratio. The strain
ratio, ,ff.min[Emax, for disk strains is not known, while the test strain ratio is -1.

VII. ALTERNATE PROBABILISTIC APPROACHES

A. Introduction

The purpose of this section is to supply some of the basic theory on calculating failure

probabilities. This is by no means an exhaustive treatment of the subject, rather it is intended to give the

reader a general understanding of how probability values may be calculated and how these techniques

may be applied to large structural models.

Probabilistic structural analysis attempts to predict the reliability (probability of nonfailure) of a

structure using known, or assumed, statistical distributions on structural parameters. In general, such an

analysis requires defining a mode of failure (material yielding, excessive deflection, etc.) and

constructing a model to predict the response by which failure is measured. For example, to find the

probability of material yielding in a structure; define failure as occurring when applied stress exceeds the

yield stress, then generate a structural model to calculate stress in the structure as a function of the

distributed parameters (also called random variables). The model relates the probability distributions

(i.e., probability density functions or cumulative density functions) of the random variables to the

probability distribution of the model response. Knowing the probability distribution of the response

variable, the probability of material yielding can be calculated.

Although various methods for determining the probability distribution (and thereby the

probability of failure, Pf) of the response exist, most of these methods become very complex as the
number of random variables increases. Several of these methods will be illustrated herein by solving a

simple example problem. The first method will be an "exact" approach involving the integration of the
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probability densityfunctions.Followingthis will beseveralapproximatemethodsincluding simulation
andsomebasicconceptsusedin theNESSUScode.

The exampleproblemto be usedis that of a prismaticbarof squarecrosssectionin simple
tension(fig. 25).

P

Figure 25. Prismatic bar in simple tension.

In this example, failure is defined as material yielding, i.e., when the stress due to p exceeds the
yield stress of the material, or

where

s = yield strength

p = applied force

b = cross section width and height.

In order to keep the problem simple, p is chosen as a constant and b and s are random variables defined
in table 15.

Table 15. Distribution parameters for example problem.

Parameter s b p

type

O"

Weibull

106 lb/in 2

104 lb/in 2

Normal

1.0 in

0.1 in

constant

800,000 lb

0.0

The left-hand side of the inequality is commonly called the "failure function" or the "limit state

equation." The failure function is generally designated as "g" and is written as

where failure occurs when

g<0 .
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Considerfor a momenttheterm_ as"appliedstress,"thenthefailure functionis

g =S-_a .

Now assume that _a has a known PDF, since s and Z a have the same units, both PDF's may be plotted

on the same axis (fig. 26).
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Figure 26. Probability density function of applied and resistive stress.

The region where the two PDF's overlap indicates the range of values for which strength is less

than stress; also, the area of the overlapping region relates to the probability of failure. Since g is a

function of random variables, g is also a random variable. If the PDF of g is known, then integrating the

PDF of g for all values such that g < 0 yields Pf (fig. 27).

fg(g) 

o % g

Figure 27. Probability density function of random variable g.

The area of the shaded region is the probability that g < 0 (also denoted as P[g < 0] ), or that the

material has yielded. Calculation of the shaded region in figure 27 is given by
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0

P[g<O] = _ fg(g)dg ,

where fg(g) is the PDF of g,and .oo to 0 is the failure region. Problems that have only one random

variable with a known PDF, such as g, present few difficulties.

B. Direct Integration

Generally, the PDF of g (or of the single response variable) is not known. This is the case for the

example problem shown in figure 25, where the distribution of b, rather than P, is known. Also, the
t J"

example problem contains two random variables, adding to its complexity (this is sometimes called a

two-dimensional problem). One classical approach to this type of problem is the direct integration of the

joint PDF over the failure region. A joint PDF is a multivariable function that gives a probability density

value for specified values of the random variables. For n independent random variables, the joint PDF is
given by

fx(2£) = _ fi(xi) , S = (X1,X 2 .... ,Xn)

n

l I"=

where fi(xi) is the PDF of each random variable Xi (known as the marginal distribution). Once the joint

PDF is known, the probability of failure may be calculated from

(92 is the failure region)

= ... " fi(x3dx,,.., dx2dXl
"=

-I

where the limits of integration are defined by the failure function g. Notice that this integral is the multi-
dimensional equivalent to the integral for P[g<0].

The example problem has a two-dimensional joint PDF, which may be written as follows

fx ) = = fs(s).A(b) ,

where the two marginal distributions are defined as

(Weibull Distribution),

and
(fl = 2, y= 980,869.4,7/= 21,586.6 => as = 10,000

,
aB 2_

Ps = 1,000,000),

(Normal Distribution) .

A plot of the joint PDF for the example problem is shown in figure 28.
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Figure 28. Joint probability density function for example problem.

Figure 29 is a contour plot of figure 28, which shows how the g function divides the variable

space into safe and failure regions (not to scale). Thus, calculating the probability of failure by direct

integration for problems with two random variables requires finding the volume under the joint PDF for
all values of the random variables where g < 0. (The procedure is the same for problems of more than

two random variables, but it cannot be visualized in this way.)
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Figure 29. Contour plot of joint PDF of example problem.
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Sinces and b are independent, the integral over f_ may be written as

b 2 S 2

l sf= _(b) fs(s),isab.
$1

The limits of integration are obtained from the limit state and from the basic restrictions on the

individual (or marginal) PDF's. Sincefs(s) is a three-parameter Weibull distribution, which is defined as

zero for all s __7, the lower limit is

s=}t.

The maximum value which S may have while remaining within the failure region _ is obtained

from the g function (used here as a limit function or "limit state"). As can be seen from the contour plot,

as long as g < O, both variables are in the failure region, therefore

O = s- bP--_ .

which leads to the upper limit on yield strength

$2 = _-P-_.

AlthoughfB(b) is a normal PDF, where --_ < b < _, the fact that s2 must be _>),places a restriction

on the range of b. The reduced range of b is found by replacing s2 with gamma and solving for b, which
yields

Including limits, the integral for Pfis

4-_ p/b2

Pf= f fB(b) f fs(s)dsdb '

-¢-p7-_ r

and performing the integration over s yields

/.i

P_= _ f_(b) [1-e-_21db,
-4-_

5O



where
P

b---_- ) ,

z=----if--

This last integral was solved numerically since no closed-form solution exists for the CDF of a normally
distributed variable. The resulting probability of failure was calculated to be

PI= 0.145861.

Although this is an "exact" technique, (the only error in the answer comes from the numerical

integration) the effort required for problems with many variables is so great that other procedures are
much more attractive.

C. Fast Probability Integration (FPI)

The techniques known as "fast probability integration" avoid the difficulties of direct integration

by approximating a problem as one which has a simple solution. To illustrate this, f'u'st consider figure

30. This figure shows a contour plot of a joint PDF. The marginal distributions for this joint PDF are
known as standard normal distributions, which means they have mean values of zero and standard

deviations of one. The coordinate system in which the joint PDF is plotted is generally referred to as

standard normal space, or u space. This special PDF has a particular property which makes it useful.

Specifically, integration over any region bounded by a linear function can be reduced to a single integral.

This property holds true for any number of coordinates/dimensions in the particular u space under

consideration. In other words, a problem with 20 random variables, a multinormal PDF, and a linear

limit state can be solved by performing one integration. This is in contrast to evaluating 20 nested

integrals using the direct integration technique.

standard

normal

4
ut

mean of

PDF

Figure 30. Standard normal joint probability density function.
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To evaluatethe single integral, -00is usedasthelower limit. The upperlimit is the minimum
distancefrom theorigin to the limit state.(Thepoint on thelimit stateclosestto theorigin is generally
calledthedesign point, or most probable point and is written as u* in standard normal space.) In figure

30, the limit state is the level curve g = 0, and the minimum distance from the origin is the value 13. In
terms of the coordinates ut and u2, the function g may be written as mu2+b-ul (where m is the slope and

b is the y intercept). Because of the symmetry of the PDF, we can write,

_- .-.oo

where mu2+b is the equation for g = 0 solved for ul, and • is the standard normal CDF. For this special

case, problems with many random variables can be solved with very little difficulty.

In the real world, few problems have multinormal joint PDF's and linear limit states. However, it

is possible to approximate a real problem using this format. One way to do this is summarized as
follows.

• Approximate each nonnormal random variable as an "equivalent normal." This requires
finding means and standard deviations such that

(%) ,',= Fxflx/*) and _0 = fx,(x .

• Use the mean, and standard deviations of the equivalent normals to transform the limit state

function into standard normal space (i.e., form g_) by substituting xi = {Yiigi+].li into g(,I)).

• Approximate the transformed limit state as a first order Taylor series function. This requires
calculating partial derivatives of g. The approximation has the form

.__ Fuil .[u,-u,] •

Note that in the first step x* refers to the design point in the original variable space, i.e.,

, X i -_l i

ui -- _i

Once the first-order Taylor series function in standard normal space is known, a new design point and fl

can be found, allowing the probability of failure to be calculated using the single integral mentioned
above.

Generally, the design point found on the linear approximation to the limit state will be close to,

but not equal to, the actual design point on the true limit state g = 0. Because the true design point should

yield the best estimate of the probability of failure, an iterative procedure is used to converge to u*. The
following paragraph describes a simple iteration procedure for finding u*.

For simplicity, the iteration procedure will be described in standard normal, or u space. Although

any point in u space may be used as the starting point, the mean values are usually chosen unless a better

52



initial estimatefor the designpoint is available.This descriptionbeginsat anarbitrary step (stepm)

where the vector (or point) u (m) has been found. The next step is to calculate the value of the failure

function at u(m), i.e., g(tt(m)). This yields a constant value, go, which defines the level curve containing

the point u(m). Calculating the gradient at u(m) and dividing by its magnitude produces a unit vector (_m)

in figure 31) perpendicular to g = go at the point u(m). The unit vector describes the direction of the

vector u(re+l), which will describe the next approximation point. The vector u (m÷_) is calculated as the

sum of two vectors, both having the direction described by _m). The first is found by projecting _(m)

onto u(m). This results in a vector describing the minimum distance from the origin to the linear

approximation of the level curve g = go. The second vector is added to account for the fact that u(m) may

not be on the true limit state (i.e., g(u(m)) _: 0). Adding the two terms identifies a new approximation

point, and a new linear approximation can then be calculated. Thus, the calculation proceeds as follows;

go = g (.lI(m)) (find go)

oe ('_) - grad(g_(ml))
Ilgrad(g_(m)))ll

(calculate _(m ))

//(//,..+1)___ (m).b/(m)]o_.(m)-4- go (m)
llgrad(g_(,n)))ll-_

(calculate next point).

Using //(m+l) as the new approximation point, the iteration continues by forming a new linear

approximation for the curve g = g_('"+_)), calculating I_ re+l), and u (''+2). The procedure is then repeated

until the estimate of t__*converges. After converging to u*, the safety index is calculated as

and the probability of failure is

g = g( U (m})

U
2

g = g( U (rn+1))

g=O

u (m)

U1

• _(m))_(m)

go Ot(rn)

II V'C.

linear approximation

to g = g(u (m)) at _u(m)

Figure 31. Iteration to find u*.
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Effectively, for a two-dimensionalproblem,this procedurecalculatesa line tangentto a level
curveof the surfaceg at each iteration step (although only one is shown on figure 31). It then finds the

vector of minimum length from the origin to the tangent line. Adding a correction factor to this vector

brings the point of the vector closer to the limit state, g = 0. The vector plus the correction factor

describes a new point in u space that is used to calculate a new line tangent to the g function. This

process is repeated until it converges to the point on g = 0 closest to the origin (commonly called the
most probable point or MPP).

One of the more basic FPI techniques, the Rackwitz-Feisler (R-F) algorithm, is very similar to

the procedure just described. A flow chart of the R-F algorythm is given in figure 32 (reproduced from
Madsen, Krenk, and Lind, reference 20, page 98). The equations in this flow chart are written in terms of

the original variables, zi, and do not explicitly involve standard normal space.

[ Initial approximation point, e.g., z(°'-EIZ] l

I
Calculation of

g 0 = g ( Z _ ..... r" )

,_(,1) '(F_ (z,)))
Oi

f 2,(:.)

Ix, - z, - nir_-I(Fz,(:,))

I
Calculation of

n

z = _. gj'z,

i_: = _.. g,'lai

O_. - 2, g,'a;

I
I

I Calculation of 1_,'O',

I ct_ = -- o. ,

p : - go - p:
_r

I _ I
I . -- . _ . rt..= I

[ -, ., , _,vv, j

I

I

l Output ]P, _'(-p_, a,, z,

Figure 32. Flow chart for Rackwitz-Feisler algorithm.
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The exampleproblemwassolvedwith theR-F procedureusinga FORTRAN programand also
by ahandcalculation.Theresultsof thesecalculationsareasfollows:

handcalculation(threeiterations)
computercalculation

Pf = 0.1471

Pf = 0.1441.

Although the R-F algorithm is fast, it is not well suited for problems where the limit state is

poorly approximated by a tangent hyperplane (the term hyperplane is used when the number of random
variables is arbitrary). Also, certain types of distributions are not represented well by a normal

distribution. A more advanced algorithm, known as the Wu-Wirsching (W-W) algorithm, 21 employs

techniques which minimize errors due to both of these sources.

The W-W algorithm reduces the error resulting from the linear approximation of the limit state in

the R-F method by approximating the exact limit state as a quadratic Taylor series function (mixed terms

are ignored):

= g0:*)+=

In the above equation, x* is the R-F design point, which is on the limit state, therefore

g(_*) = 0 .

After calculating the derivatives for the quadratic approximation, the quadratic limit state is transformed

into a linear limit state using one of several strategically chosen transformations. This reduces the

computational effort required to find the safety index (,8) while retaining the information contained in

the quadratic approximation. It may be of interest to note that since the limit state is initially

approximated as a second-order polynomial, the W-W algorithm may be classified as a second-order

reliability method (SORM). This is in contrast to the R-F algorithm that approximates the limit state as a

first-order polynomial, and is referred to as a first-order reliability method (FORM).

Errors caused by an equivalent normal which poorly approximates the original distribution are

reduced by using a "three-parameter equivalent normal." The three-parameter equivalent normal is

simply a two-parameter normal distribution, multiplied by the scale factor A.

three-parameter equivalent normal = A_x) .

The three parameters (A,/2,cr) are found using a least squares approach. Beginning with the R-F values of

12and ¢r of each variable, the linearized limit state is written in the form

g(x) = ao+a iXi+ Y = 0 ,

where Y is the sum of all terms other than Xi. This reduces the problem to two random variables, where Y

is known (from the initial R-F analysis) and we wish to determine A, cri, l/i for Xi. The unknown values

are found by minimizing the square of the error between the approximate and actual distributions

modified by an appropriate weighting function. This is formulated as minimizing E, where

E = f [AO(z)O (v)-Fx(x)q) (v)] 2dx ,
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subjectto theconstraint
a o+a .,Xi+Y = 0 ,

where

x-/l i x-p r
z = -- and v -

G i Gy

Although the three unknowns may be found by applying an optimization routine to minimize E, it is

more efficient to require that the area under the two functions is equal over the failure region.

I Fx(x)4_ (v)dx
m="

fn ,t,(z)¢ (vldx

Substituting this last equation into the equation for E reduces computational effort by reducing the
number of variables to be found by the optimization routine.

The general procedure for this algorithm is similar to the R-F algorithm. Each step begins with
an R-F solution for 13and the corresponding design point and statistical moments. An improved solution

is then obtained by using the quadratic limit state approximation and the three parameter equivalent
normals. As with the R-F algorithm, the procedure is repeated until a convergence criteria is met.

The example problem was solved using a FORTRAN program of the W-W algorithm. Although

this algorithm has been shown to be more accurate than the R-F procedure, 21 no difference between the

results of the two different solutions was observed. This is probably because the true response function

of the chosen example is almost linear near the design point.

Finally, the probability of failure was calculated using Monte Carlo techniques. Using a modified
version of one of the JPL programs, the probability of failure was calculated to be

Pf= 0.14556 ,
for 1,000,000 simulations.

Although many of the algorithms for probability estimation are more advanced than the ones

presented here, two concepts are central to most. Briefly, these concepts are:

(1) Using some type of transformation from "x" space (original variables) to "u" space
(standardized variables)

(2) Use of an approximate response function.

Most probabilistic algorithms will use these concepts in some form. For more information on the basic

techniques, reference 21, and a paper by Chen and Lind 22 is recomended. For more advanced

techniques, the paper by Thacker and Wu 23 and its references should supply a good starting point. Also,
a paper by Khalessi, Lin, and Trent 24 along with its references may be of interest.
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D. NESSUS (Probabilistic Finite Element Software)

NESSUS (numerical evaluation of stochastic structures under stress) is an automated probabilis-

tic structural analysis program that is capable of response, reliability, and risk (cost of failure) assess-

ment. 25 Reliability and risk analysis are also available for structural systems using a fault tree to relate

the bottom events. One of the unique features of NESSUS is the automatic generation of "response sur-

faces" from implicit (finite element) models. This ability allows the user to perform probabilistic analy-

sis on very complex components and/or systems defined implicitly by either a finite element or

boundary element model. Without this feature a probabilistic analysis of an implicit model would

require the user to manually alter the model to generate the required explicit response function. This

would be very time consuming. Also, the advanced mean value (AMV) method employs iterative

procedures that will re-analyze the finite element model until reaching a user defined convergence
tolerance. NESSUS allows finite element random variables defined as loads, material properties,

element properties, geometry, or some combination of these. This gives the user great flexibility in

describing the analysis problem.

The NESSUS software package is arranged into several modules. While most modules can be

run as a "stand-alone" analysis, they are designed to be stacked together to form an automated analysis

procedure. Three of the modules may be considered the primary functions of NESSUS. These modules
are PFEM, FEM/BEM, and FPI.

The FPI module does the actual probabilistic calculations. A variety of probabilistic calculation

methods are available, and include FORM, SORM, FPI, and several sampling techniques. During a

typical analysis, FPI will receive random variable definitions from PFEM and response function
information from FEM or BEM. FPI will then perform the selected analysis and (conditionally) return

information to the controling module about how the analysis should continue.

The PFEM module controls probabilistic analysis of a finite element or boundary element model.

In this module, the user defines random variables for finite element quantities and perturbations for

generating the response surface. PFEM also controls various options for the mean value (MV), AMV,
and adaptive importance sampling (AIS) probabilistic analysis methods. In general, PFEM controls the

interaction between the FEM/BEM and FPI modules and the analysis techniques used.

FEM/BEM's are the finite element and boundary element modules, respectively. These modules

allow the user to define complex implicit models (used to generate approximate response functions) in

either a finite or boundary element format. These modules add much versatility to NESSUS since the

user would otherwise be restricted to closed-form response equations.

Other modules in NESSUS include:

SIMFEM, which allows simulation to be applied directly to a finite element model

RISK is used to compute component risk in terms of cost of failure

PRE is a preprocessor which "uncorrelates" field variables given means, std., and a correlation
model

SRA coordinates PFEM with fault tree analysis for system reliability and risk assessment.
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AlthoughFPI techniquesareconsideredveryefficient,anFPI analysisusingan implicit response
function (like a finite-elementmodel)may still requiremuchcomputertime. To developthe explicit
responsefunction usedby FPI techniques,it is necessaryto solvethefinite-elementmodelseveraltimes
for different valuesof therandomvariables.Becausesolvinglargefinite-elementmodelscanbecostly,
efficient probabilistic analysisrequiresan algorithm that minimizes the numberof model solutions
required.One suchalgorithm, the AMV method,is availablein the NESSUSsoftwarepackage.The
AMV methodwasdevelopedspecificallyfor analysisof implicit responsefunctionsandusesveryfew
functionevaluations.26

TheAMV proceduremaybeusedfor varioustypesof analysis.It maybeusedto calculateeither
responsevalues for a given probability (called PLEVELS analysis)or probability for a specified
responsevalue (called ZLEVELS analysis).Also, theNESSUSuserhasthe option of using either a
linear or an incompletequadratic(mixed termsareignored)asanapproximateresponsefunction.For
simplicity, theAMV methodis describedfor aPLEVELSanalysisusingalinear responsefunction.

A brief summaryof theAMV procedureis describedin thefollowing steps:

(1) Constructa linearapproximationto Z (the true response) at the mean values

z(.X_.)= + ,E az .J
i= 1 x*

=Z 1 .

(2) Using FPI techniques, find zo and the MPP such that

P[Z1 < Zo] = requested probabilities .

This constitutes the MV solution.

(3) Re-analyze Z at the MPP found from the MV solution and recompute zo, the new zo is the
AMV solution

(4) If desired, form a new ZI about the AMV MPP and return to step 2 until zo converges.

For a more detailed description of this procedure, consider a continuous nonlinear response
function

Z = Z(_._ ,

where X is a vector of n random variables

X=(Xl,X 2 ..... Xn) .

Using a Taylor series evaluated at the mean values, Z may be written as
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-- i=1

n

= a° + ,'_=1a'_i+H(_-)

= Z I+H(20.

Where/_ is a vector of mean values and H(X) represents the higher order terms. The linear approxi-
mation of Z at the mean value is Z1. By ignoring the higher order terms, the coefficients for Z1 may be

found using perturbation techniques requiring only n+l function evaluations. Once the coefficients ao to

an are known, an analysis is done based on Z1. This is known as the mean value or MV analysis.

of Z 1.

For the PLEVELS procedure, the MV analysis begins by using the mean and standard deviation

n

11 z_ = ao + i_=l.=ai]2 i "

= aiCY i •
- i=1

These moments are used to estimate a range of probabilities (po1 through pon) and the corresponding

(zI through z_) that span the user requested probabilities. In other words, find a range of zo values such

that

P[Z1 < z_] < requested probabilities < P[Z l < z_] .

This step generates approximate points on the CDF curve of Z1. FPI routines are then used to improve

the Po estimate for each zo value and interpolation is used to approximate a zo value for the user

requested probabilities. With the interpolated zo values, FPI is used once more to calculate more precise

values of po. Also, the calculation produces specific values of the random variables corresponding to

each Po. These values are known as the design points, or the MPP's for each Po. This completes the MV

analysis. Note that although FPI was run several times, the analysis is fast since Z1 is explicitly defined.

The vast majority of the computation effort lies in the generation of Z1 from the finite element model.

The AMV procedure calculates improved response values by calculating values for the function

H(_X). This is done by re-analyzing the response function (finite element model) at the MPP's found in

the MV analysis. When the actual response function is nonlinear, H(X) will be nonzero, and is given by

H(,t*) = Z(_*)-Zl(_*) ,

where x* is the MPP. Adding the correction factor H@*) gives an improved approximation to the true

response function in the vicinity of _*. This in turn allows for improved estimates of Po and the

corresponding MPP.
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An iterationprocedure,knownasAMV+, is alsoavailablein theNESSUScode.This procedure
improvestheestimatesobtainedfrom AMV by constructing a new Zl at the MPP found by AMV. The

new Z1 is then used in a MV analysis and again in AMV, repeating this cycle until zo converges. 27

Although the MSFC team has spent limited time reviewing NESSUS, several advantages and
disadvantages of the NESSUS probabilistic finite element code have been noted and are listed below:

• Automatic response surface generation and design point search

• Random variables defined using mean and standard deviation for many types of distributions

• Changing the type of probabilistic analysis is easy (FPI, Monte Carlo, etc.)

• Format of input data is relatively simple

• FPI algorithms produce sensitivity values as well as probability values.

• The NESSUS finite-element package is limited in the types of elements it supports and in that

only one element type may be used for each model

• FPI algorithms may not be very accurate for problems with highly nonlinear response functions
(results were compared to Monte Carlo results using explicit response equations)

° The operator must guess as to what perturbation step size will give the best results

• Defining geometry parameters as random variables can be quite time consuming when a large
number of nodes are involved.

VIH. PROBABILISTIC BASED DESIGN CODES

Uncertainties in the definition of loads and environments, material properties, geometric

variables, manufacturing processes, engineering models, analysis tools, and all types of testing including
verification and certification lead to uncertainties in space vehicle and structure design, and ultimately

safety. Clearly, quantifying and understanding "problem uncertainties" and their influence on design

variables develops a better engineered, designed, and safer structure. Two formats are available for
characterizing design uncertainties: (1) deterministic�safety factor and (2) probabilisticlreliability. The

classical deterministic analysis approach accounts for design uncertainties in "lump sum" fashion by

multiplying the maximum expected applied stress (a single value) by a factor of safety. Often, design

verification is achieved by applying a worst case loading (e.g., a 3-sigma load condition multiplied by

the safety factor) to the structure and testing to failure. In contrast, the probabilistic format attempts to
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mapeachindividual parameteruncertaintyinto a probabilitydensityfunction.A testconstructeddata
basegives thebestcharacterizationof randomvariables.If testdataarenot available,then theengineer
must makeassumptionsconcerningthe parameterdistributions.Once the distributions are defined,
transformationequationsare used to combine the density functions into a cumulative distribution
function of the designvariable; for example,appliedstress.In this case,the designparameterhasan
uncertaintythatis quantifiedin termsof risk.

To develop a NASA structural designcodebasedsolely on the probabilistic format without
compromisingthe structural safety of hardwaredesignis not achievablefor the near future. This
statementis especiallytruewith respectto thecurrentlyavailableprobabilisticengineeringanalysistools
andtest verificationprograms.In general,theanalyticaltools that havebeendevelopedaredifficult to
understandandimplementinto adesignprocedure;andmoreimportantly,themethodshavenotbeen
testverified or universallyacceptedby theengineeringcommunity.Beforeaprobabilisticbaseddesign
codeor programcanbesuccessful,designengineersmustdevelopanexperienceandeducationbasein
this field. Most engineeringschoolsdo not offer probabilistic baseddesigncoursesas part of the
curriculum.

True reliability mustbedemonstratednot simply estimatedfrom anengineeringanalysis.Until
failure and failure rate databasesareavailablefrom experience,probabilistic methodscan bestbe
utilized as a design tool to help identify the sensitivities of problem parameters.Furthermore,
"demonstratedstructuralreliability" is virtually animpossibletaskdueto theexpenseandsmallnumber
of structuresthat NASA builds. However,it may be feasibleto developa moreconsistentstructural
designcodethatusestheprobabilisticformatin combinationwith theacceptedsafetyfactorapproachto
design.Thecivil engineeringprofessionhassuccessfullyuseda combinedformat in thedevelopmentof
the load andresistancefactor design(LRFD) codefor steelstructures.28Developingthis conceptfor
applicationwithin NASA offers a naturalextensionto thecurrentMSFC probabilistic analysisteam
work tasks(longtermobjective),andprovidesapracticalareafor futureresearch.

IX. REPORT SUMMARY AND RECOMMENDATIONS

In March of 1991, MSFC formed a special task group to review the probabilistic engineering

analysis methodology PFA developed by JPL. 24 The JPL team was led by Dr. Nick Moore as part of the

Engine Certification Project funded through codes Q and M (project start, 1985). A number of important

findings have resulted from the Marshall team investigation and are documented within the body of this

report. Comprehensive background information and technical details have been provided for the
interested reader. The sections below provide: (1) a summary of the findings and (2) the
recommendations of the task team review. Note, this report presents the work of the Marshall

probabilistic analysis team during 1991-1992. The MSFC team members are: Dr. John Townsend,
Mario Reinfurth, Rene Ortega, Charlie Meyers, Jeff Peck, and Bob Weinstock.

(1)

A. Summary of Task Group Findings

The PFA methodology is not a generic "tool" that can be easily applied to most engineering

problems. In almost every case, the software is problem specific and must be restructured for

a given application.
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(2) TheJPLreportsdocumentingtheprobabilisticapproachandmethodsareextremelydifficult
to penetrateandunderstand.

(3) The Monte Carlo front end featureof thePFA analysisprogramis the most valuableand
useful part of the JPL work. However, the complexitiessuchas Burr curve fitting and
Bayesianupdating,appearto beunnecessary.

(4) TheJPL teamhasnot identifiedspecificdetailsof theengineeringdesignprocessandhow
the PFA methodsapply. In particular, the techniqueby which an engineer integrates
complexmodels,suchasfinite elements,intoaprobabilisticframeworkis very unclear.

Basedon our findings, the JPLteamhasnot developedanengineeringtool that canbe easily
understoodandapplied.As partof this investigation,wehavelookedat a numberof othermethodsto
perform probabilistic engineeringanalyses.Someof thesemethods,namely NESSUSand FPI (Fast
ProbabilityIntegration)offer amorepracticalprobabilisticallybasedtool for theengineer.

It is importantto notethatthetaskgroupconsiderstheintroductionof probabilisticmethodsinto
designpracticesa valuableand necessaryobjective. Incorporationof distributions/uncertaintiesand
sensitivityanalysesinto currentdesignpracticeswouldaid in: (1) morecarefullyconsideringthe basis
andrangesfor estimatesof loadsand materiallife, (2) avoidingoverly conservativedesigns,and (3)
characterizingtherisk of failure.

While theMSFCtaskgroupdoesnotbelievethatthePFAmethodologyoffersa practical,stand-
alone,engineeringtool for probabilisticanalysis,we recognizethe"groundbreaking"effortsof theJPL
team.In particular,theJPLeffort hassucceededin introducingandadvancingtheprobabilisticapproach
within NASA, with particularemphasisoncouplingdeterministicanalysiswith statisticaldistributions
of significantparameters.

B. Recommendations

The MSFC team has been active in probabilistic design analysis for about 18 months. We have

examined the PFA methods, other design tools such as NESSUS and FPI, conducted/participated in

training sessions and seminars, and worked jointly with university researchers. Based on our

investigations, the following recommendations are presented.

1. PFA Methodology. The PFA methodology should not be adopted as a primary method for

probabilistic structural analysis at NASA. With the exception of the Monte Carlo simulation front end
feature, the analysis tools as currently constructed have limited application. The JPL front end

simulation software is a useful FORTRAN product and should be made available to interested parties.

2. NESSUS. The NESSUS probabilistic finite element software package is a good engineering
analysis sensitivity tool for use in component structural design. If this package were more user friendly

with broadened application features, NESSUS could become a standard design tool for probabilistic

analysis in NASA applications. In particular, the current NESSUS code should be modified and
expanded to allow for linking standard finite element codes (such as NASTRAN, ANSYS, etc.) and to

allow for usage of multiple finite elements.
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3. Investigate LRFD. Ten years ago, the civil engineering profession introduced probabilistic

methods into structural design practices. The goal was to produce designs with a more consistent level of

safety against structural failure. Their methodology is termed LRFD. Because LRFD moves beyond a
deterministic factor of safety approach, it may offer beneficial insights and applicable methods. It is

recommended that the MSFC task team investigate the applicability of LRFD.

4. Near-Term Integration of Probabilistic Design Methods. For the near-term, the goal should

not be to replace current engineering design practices with probabilistic methods. Rather, the goal should

be to supplement current safety factor deterministic approaches with probabilistic methods. The
emphasis should be on gradual introduction of probabilistic methods (1) to characterize and determine

the effects of loads and material property uncertainties and (2) to estimate the risk of particular failure

modes, such as crack propagation.

In addition, the research efforts on probabilistic methods should not focus on the development of

a "system reliability number." While system risk quantification is desirable, more realistic and
achievable progress can be made by focusing on sensitivity analysis of life drivers at the

component/failure mode level. The latter emphasis will be of relevancy to the practicing design engineer

and ultimately lead to a more robust design.

5. Formulation of a Small Agency-Wide Committe¢. To avoid duplicative effort across NASA

centers and to achieve a consensus on direction and specific work efforts, it is recommended that a small

working group be established. Initially, the committee would be chaired by NASA Headquarters,

comprised only of NASA personnel, and be limited to a size of approximately 10. The committee would

aid in charting probabilistic design project direction and funding.

6. Survey Existing Probabilistic Design Efforts in NASA. It is apparent that there are a number
of other engineering groups active in probabilistic design methodology at NASA, with little

communication among groups. We recommend that a survey be conducted to determine : (1) what work
is being done; (2) where and by whom; (3) the objectives, goals, and duration of the work; and (4) the
cost.

7. Training. The education and training game plan should be to develop expertise within a small
group of NASA engineers with the purpose of these individuals developing and presenting probabilistic

design courses. It is both ineffective and costly to continually contract out training for large numbers of

NASA personnel.
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